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Optical tweezer experiments
• Highly focussed optical dipole trap (waist ~1μm)
• Large scale, reconfigurable arrays of trappedsingle atoms.
• Long-range interactions through Rydberg states.
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6100 trapped Cs atomsManetsch, …, Endres, arXiv 2403.12021v2, 2024

Motivation
Long-range Rydberg interactionsBrowaeys & Lahaye, Nature Physics, 2020

• Quantum computing:
• Implement universal (quantum) gate set.
• Solve generic problems.

(Henriet et al., Quantum 2020)
• Quantum simulation

• Map hard problem into implementable Hamiltonian.
(Ebadi, …, Lukin, Nature, 2021)



Overview
• Motivation
• Introduction
• Erbium.
• Our experiment – a lab tour.

• Physics
• Polarisability.
• Single atoms & pairwise losses.
• Additional losses.

• Outlook
4



Adapted from image in the Wikimedia commons by Armtuk (CC BY-SA 3.0 DEED)

Erbium
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Erbium
• Five cycling transitions ( 𝐽 = 6 → 7) fromstretched states (𝑚𝐽 =± 6).
• Linewidths from Γ/2𝜋 = 29MHz to 0.9 Hz.

29 MHz & 190 kHz

30 kHz, 8 kHz & 0.9 Hz

• 167Er: 𝐼 = 7/2 – 8 state hyperfine manifold.
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Erbium Rydberg States
• Many excitation possibilities frommany electrons:
• Doppler free.
• Low spontaneous emission rate.
• Large effective Rabi frequency.

• Isolated core excitations.
(Pham, …, Cheinet, PRX Quantum, 2022)
• 𝑠 to 𝑔 two photon transition.
(Trautmann, …, Ferlaino, Phys. Rev. Research, 2021)
• Direct Rydberg state trapping.
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Ryds〉   = Xe 4𝑓126𝑠 𝑛𝑠/𝑛𝑑 Ryd𝑓〉   = Xe 4𝑓116𝑠2𝑛𝑝/𝑛𝑓/𝑛ℎ

Er+〉   = Xe 4𝑓126𝑝 Yb
Er

Rb (x 0.1)



The experiment: vacuum system

• 583 nm (Γ/2𝜋 = 190 kHz): Magneto-optical trap (MOT).

Oven ~ 1 200 °C
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Zeeman slower

Transverse Cooling

• 401 nm (Γ/2𝜋 = 29MHz):Transverse cooling& Zeeman slower.

vcap ~ 340m/svcap ~ 4m/s

Main chamber



MOT (583 nm, Γ/2𝜋 = 190 kHz)
• 2 counter-propagating horizontal beams & 1 vertical beam in quadrupolar B-field.
• Free optical access from top.
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• ~35 ms loading time.
• 230 ms compression.
• Final temperature ~7 μKwith ~100 000 atoms



Optical tweezers
• Tightly focussed (waist 1.05(4) μm)dipole traps using 488 nm light.

Objectiv
e

0.42 NA

AO
D

• Re-configurable array generated by acusto-optic deflector(AOD).
• Polarisation control with motorised waveplates.
• Load by overlapping with cMOT for 20 ms.
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5 μm



Fast Imaging (401 nm, Γ/2𝜋 = 29MHz)
• Fast fluorescence imaging (~30 μs) onbroad 401 nm transition.
• “Free” of atomic dynamics.
• Destructive.
• Useful diagnostic tool or final readout.
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Bergschneider, …, Jochim, Phys. Rev. A, 2018
Su, …, Greiner, arXiv 2404.09978v1, 2024



• Take many images to get statistics onfluorescence signal distribution.
• Fit distribution peaks.
• Define thresholds and calculate fidelities.
• Categorise subsequent signals based ondefined thresholds.
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52 photons

Introduction | Experiment Overview

1 atom 2 atoms 3+ atoms

Counting atoms per tweezer

= 1 atom

• Typical fidelities:
• 0:1 – 99.5 %; 1:2 – 92 %;



Slow imaging (583 nm, Γ/2𝜋 = 190 kHz)
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• Slow (80 ms) fluorescence imaging onnarrower 583 nm transition of singleatoms.
• Non-destructive – simultaneous cooling.
• 10° beam tilt – axial overlap.

Introduction | Experiment Overview
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Atomic polarisability
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𝐸

|𝑔〉

|𝜈〉

Δ𝑈 = ℎΔ𝜈

ℎ𝜈

Physics | Polarisability

• Trapping potential depth depends onatomic polarisability, 𝛼.
• A priori, different in ground and excitedstates.
• Difference in trap depth between groundand excited states
Δ𝑈 𝐫 = 𝑈|𝜈〉−𝑈 𝑔 = −Δ𝛼 𝜈,𝜒

2𝜖0𝑐
 𝐼(𝐫).

• AC Stark shift (“light shift”), Δ𝜈.
• Heating.



Erbium polarisability
𝛼total = 𝛼𝑠 𝜔 + cos 𝜃𝑘  sin 2𝜒  𝛼𝑣(𝜔) + 𝛼𝑡(𝜔, cos2 𝜃𝑝 )

Where:
• 𝜒, ellipticity of trapping light.
• 𝜃𝑘, angle between trapping light & quantisation axis.
• 𝜃𝑝, angle between polarisation & quantisation axis.
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• We fix, 𝜃𝑝 = 𝜋/2 & 𝜃𝑘 = 𝜋.
⇒𝛼total = 𝛼𝑠 𝜔 −sin 2𝜒  𝛼𝑣(𝜔) + 𝛼𝑡(𝜔,0)

• Tune polarisability using trap light ellipticity, 𝜒.
Becher, …, Ferlaino, Phys. Rev. A, 2018

Typically very small for alkalis

Physics | Polarisability



Magic conditions
• Tune polarisability usingellipticity of trapping light 𝜒.
• “Magic condition” for𝑈|𝜈〉/
𝑈|𝑔〉 = 1.
• Motorised waveplates tocontrol trap light polarisation.
• Need to be relatively magic toefficiently load tweezers.
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Δ𝑈 𝐫 = 𝑈|𝜈〉−𝑈 𝑔 = −Δ𝛼 𝜈,𝜒
2𝜖0𝑐

 𝐼(𝐫).

𝑈
|𝜈〉
/𝑈

|𝑔〉 |583〉
|841〉

|401〉
|𝝂〉

𝑈|𝑔〉

𝑈|𝜈〉

𝑈|𝜈〉 =𝑈|𝑔〉
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Maxence
Lepers
ICB



Light shiftmeasurement
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(583 nm, Γ/2𝜋 = 190 kHz)

• 583 nm fluorescence spectroscopy(destructive, 1 ms).
• Scan trap power & ellipticity.

Increasingtrap power

Ellipticityangle,𝜒

𝑈|𝑔〉



𝑈
|𝜈〉
/𝑈

|𝑔〉

Trap ellipticity angle, 𝜒 (°)

Finding the magic
• Magic condition found at 𝜒 ≈ 26°
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(583 nm, Γ/2𝜋 = 190 kHz)

Physics | Polarisability

Increasingtrap power

White et al., in preparation



Single atoms
• ~5 atoms in each trap after loading.
• Induce losses to get single atoms.
• Light-assisted collisions: pairwise losses.
• ~ 50 % single atom probability.
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𝐸

|𝐫|

1
2
(|𝑆,𝑃⟩ + 𝑃,𝑆 )  

|𝑆,𝑆⟩

Δ𝐸

Physics | Pairwise losses

𝑈 𝑟 = 𝐶12
𝑟12

−𝐶6
𝑟6
−𝐶3
𝑟3



Light-assisted collisions
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583 nm light on

Mean numberof atoms
Dark lifetime

(583 nm, Γ/2𝜋 = 190 kHz)

• Probe atom number in singletweezer at different Δt.

Physics | Pairwise lossesWhite et al., in preparation

1 atom
2 atoms

3+ atoms



Relative loss rates
• Repeat for different 583 nm detunings.
• Good agreement with Monte-Carlosimulations.
• 1-body: single body heating.

• “Optimum” detuning.
• Maximum 2-body loss relative to 1-body.
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(583 nm, Γ/2𝜋 = 190 kHz)

White et al., in preparation Physics | Pairwise losses

Svetlana
Kotochigova

Temple University

Monte-Carlo
Simulations

𝑈 𝑟 = −𝐶3
𝑟3



Single-body losses
• Start from single atoms.
• Scan 488 nm trap power.
• Turn on 583 nm LAC-condition light.
• Measure survival.
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(583 nm, Γ/2𝜋 = 190 kHz + 488 nm)

White et al., in preparation Physics | Single-body losses

• Losses at high trap powers.
• Primary loss mechanism wehave is single-body heating.

𝑣axial

𝑣radial

Monte-Carlo
Simulation



Trap-related loss mechanisms
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(583 nm, Γ/2𝜋 = 190 kHz + 488 nm)

|583〉

|583 + 488〉
Δ488

Δ583

• Coupling to excited state. • Photoionisation.

|583〉
Δ583

• State predicted with
• Δ488 ≈ 100 GHz.
• Γ/2𝜋 ≈ 10 kHz

• Free running trap laser.
Maxence
Lepers
ICB



Non-destructive imaging
• Single-body losses give ~70 % survival for 583 nm imaging.

• Not good enough for desired experiments: many imaging steps e.g. for re-arrangement.
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• “Bridge” in histogram:
• 0:1 atom fidelity of ~93 %.
• (99.5 % for 401 nm imaging).

Physics | Single-body losses

(583 nm, Γ/2𝜋 = 190 kHz)



Outlook
• Axial direction cooling

• Vertical 583 nm beam through objective.
• Additional 841 nm (Γ/2𝜋 = 8 kHz) beam.

• Two photon effects: 486 nm laser.
• Lockable & tuneable (~1 nm).
• Larger detuning from predicted 583 nm + 488 nm state.
• Additional predicted magic condition for 841 nm.

• Trap and imaging system aberrations: new objective with 1” input.
• No more 3” & 4” optics or compensation glass.
• Reduce trap waist (measure 1.05 μm, theoretical is ~0.6 μm).
• Less imaging system aberrations – shorter imaging times.

• Implement spatial light modulator (SLM) – 2D tweezer arrays.
• Resolved sideband cooling with 841 nm to motional ground state.
• Further explore Rydberg state excitations.
• Electrodes and MCPs 26
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Backup slides
• ‘ere be dragons.
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Lukin – Quantum simulation

• Quantum phases of matter on a 256-atom programmable quantum simulator
• Re-arrangement: 50–100 ms for arrays of up to a few hundred atoms
• Filling fractions exceeding 99%
• Nature volume 595, pages 227–232 (2021) 29



Rydberg dephasing
Let 𝑠|i = 𝐼/𝐼sat, then:
• Effective Rabi,Ωeff =

Ω1Ω2
2Δ

= Γ|𝑛 Γ|𝑟
4Δ

𝑠|𝑛 𝑠|𝑟
1/2.

• Off-resonant scattering rate, Ri ≈ Γ|i
4
Ω2
i

Δ2
=

Γ3|i
8Δ2
 𝑠|i .
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Electrodes and MCPs
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Trap waist

33

• Measure radial trapfrequency using parametricheating.

Pow
er

Tweezer beam
profile



Tweezer optical setup
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Atomic polarisability
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583 Loss Spec (401 Img)
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401 imaging
• Alternating pulsed beams – ~1.5 us pulse length.
Well explored in Su, …, Greiner, arXiv 2404.09978v1, 2024
• Averaged image:

• Longer time image:
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583 nm imaging
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Blue-enhanced loading
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Grünzweig, …, Anderson
Nature Physics 6, 951–954 (2010)



Auto-fluorescence/phosphorescence
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Two photon loss simulation
•Γ2/(2π) ~ 61 kHz•Δ2 ~ 1 cm^(-1) ~ 2π×30 GHz
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Monte Carlo
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6𝑠 electron excitations
1st photon 2nd photon 𝚫𝝀 / nm Γ|𝑛 / kHz 𝐽|𝑛 Excited state

401 411 10 30 000 7 4f12(3H)6s6p
583 312 271 180 7 4f12(3H6)6s6p(3P°1)
426 388 38 300 5 4f12(3H)6s6p
420 393 27 30 6 4f12(3F)6s6p(3P°)
419 394 25 300 5 4f12(3F)6s6p(3P°)
418 394 24 600 5 4f12(3H)6s6p
391 422 31 900 7 4f12(3H)6s6p(3P°)



4𝑓 electron excitations
1st photon 2nd photon 𝚫𝝀 / nm Γ|𝑛 / kHz 𝐽|𝑛 Excited state Remarks

389 329 60 7000 5 4f11(4F°)5d6s2
1299 207 1092 1e-3 7 4f11(4I°15/2)5d3/26s2 x2 1 Photon
365 349 16 0.3 7 4f11(4I°)5d2(3P) 6s
357 357 0 1 7 4f115d6s2
353 360 6 50 7 4f11(4I°)5d6s6p
342 372 30 3 5 4f11(4F°)5d6s2
338 377 39 0.2 6 4f11(4I°)5d2(1D) (4G°)6s

• Doubled Ti:Sapph range is ~335-525 nm (M-Squared website).
• Many unassigned levels in NIST < 400 nm.
• Only a few states have rate information.



Dephasing: photon recoil
• Doppler shift from photon recoil [1]

Solutions:
• Counter-propagating beams at similar wavelengths.
• 3-photon excitations
• Excitation from motional ground state.
• Gets less important at larger Rabi frequencies (> 1 MHz) [2].

[1] Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions https://doi.org/10.1103/PhysRevA.84.053409
[2] Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states https://doi.org/10.1103/PhysRevA.97.053803

http://doi.org/10.1103/PhysRevA.84.053409
https://doi.org/10.1103/PhysRevA.97.053803

