B universitat
" Innsbruck

OAW AUSTRIAN ACADEMY OF SCIENCES I
INSTITUTE FOR QUANTUM OPTICS AND QUANTUM INFORMATION N

Erbium in optical tweezers

Samuel J. M. White
AG Ferlaino, TREQS Lab

LLIF o NF

Der Wissenschaftsfonds. Swiss NATIONAL SCIENCE FOUNDATION




Overview

* Motivation

* Introduction
* Erbium.
* Our experiment —a lab tour.

* Physics
* Polarisability.
* Single atoms & pairwise losses.
* Additional losses.

e Qutlook



Optical tweezer experiments

wrl 006

Highly focussed optical dipole trap (waist ~1
um)

Large scale, reconfigurable arrays of trapped
single atoms. Bl

----- i 200 pm

Long-range interactions through Rydberg states. 6100 trapped Cs atoms
e Quantum computing: Manetsch, ..., Endres, arXiv 2403.12021v2, 2024

* Implement universal (quantum) gate set. =T
* Solve generic problems. 00 08060
(Henriet et al., Quantum 2020) © 0 Q{ O @O \:O
* Quantum simulation FE/‘ O O Og
* Map hard problem into implementable Hamiltonian. “ o g
(Ebadi, ..., Lukin, Nature, 2021) 0000000

Long-range Rydberg interactions
Browaeys & Lahaye, Nature Physics, 2020

Motivation
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Erbium

« 167Er: [ = 7/2 — 8 state hyperfine manifold.

* Five cycling transitions (] =6 — 7) from
stretched states (m; =+ 6).

* Linewidths from I'/2t =29 MHz to 0.9 Hz.

4% (*Hg)6s6p("P1)(6,1)7
25000 -
20000
—.g : _—4f"*(*Hq)6s6p(*P3)(6,1);
E 15000 ; i A1 51)5d5,,65%(13/2,3/2)3
g £11(*1°572)5d5/,65%(15/2,5/2);
> 10000 841nm . ==
2
— 4"(115)5d5,65°15/2,3/2); | 30 kHz, 8 kHz & 0.9 Hz
5000 ——— /
299 nm
4f"*(*Hq)6s® ground state
0t w .
A 5 6 8 9 10 11
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* Many excitation possibilities from
many electrons: N\

//1/
~ e

* Doppler free. IRyd,) :\[iéj?if126s ns/nd — |Rydp) =[Xe]4f"6s?

* Low spontaneous emission rate. ———_

. . //4 \\\7
* Large effective Rabi frequency. ' ¢
* |solated core excitations. [ 'L . Rb (x 0.1) C |
(Pham, ..., Cheinet, PRX Quantum, 2022) | N | 100]
* s to ¢ two photon transition. A

(Trautmann, ..., Ferlaino, Phys. Rev. Research, 2021)

* Direct Rydberg state trapping. |Er*) =[Xe]4f
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The experiment: vacuum system

Veap ~ 4 m/s Veap ~ 340 m/s
< S
* 401 nm (I'/21t = 29 MHz): Y Zeeman slower
Transverse cooling Q ‘

& Zeeman slower.

P = n
| B
Y
1 -
- v g |
1 C g -
B » e =

= N
= - - - E = - 0 _ -
4 v - !

o
Oven ~ 1200 °C

L] ]

i

Main chamber Transverse Cooling
(I'/27t =190 kHz): Magneto-optical trap (MOT).

Introduction | Experiment Overview 8



MOT ( , I'/21t1 =190 kHz)

e 2 counter-propagating horizontal beams & 1 vertical beam in quadrupolar B-

field. | o
s Beee ppTical g aadrom top.
* 230 ms compression.

e Final temperature ~7 uK
with ~100 000 atoms

( P
1 B *’Lﬁﬁ% \>2, /. Sy
wh . 0 N
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Optical tweezers

* Tightly focussed (waist 1.05(4) um) e
dipole traps using light. D

* Re-configurable array generated by acusto-optic deflector
(AOD).

* Polarisation control with motorised waveplates.

e %2 00 920 0900000000 RO RORNORNNODRNODRNODORNODRBODRODONYDODPNODNODBDRNDODO

S um=—

A\

Objectiv
e
0.42 NA



Fast Imaging (401 nm, I'/2t = 29 MHz)

* Fast fluorescence imaging (~30 pus) on
broad 401 nm transition.

e “Free” of atomic dynamics. Dichroic,_
H 488 nm
» Destructive. T Moresconce
. . . ligh
* Useful diagnostic tool or final readout. o é]

Objective 401 nm

Imaging 2

Camera
]B

401 nm

Imaginy
Science

chamber

Bergschneider, ..., Jochim, Phys. Rev. A, 2018
Su, ..., Greiner, arXiv 2404.09978v1, 2024




Counting atoms per tweezer

0.35

* Take many images to get statistics on
fluorescence signal distribution.

* Fit distribution peaks.
e Define thresholds and calculate fidelities.

o
w

1 atom|2 atoms| 3+ atoms

>
0.25

* Categorise subsequent signals based on
defined thresholds.

QAT

Fractional occurrence
o
™)

<
—_—

52 photons

=1 atom

0 50 100 150 200
Photons

* Typical fidelities:
* 0:1-99.5%; 1:2 -92 %;
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Slow imaging ( ,1/27t =190 kHz)

Mirror \
/ Camera

* Slow (80 ms) fluorescence imaging on
narrower transition of single Dichroic_

atoms. 488 nm
Trap Fh%rescence .'ED
* Non-destructive — simultaneous cooling. light Dichroic
* 10° beam tilt — axial overlap. Objective Aotmm [j
maging
IB ( Camera
401 nm 583 nm
o Imaging 1 Imaging/
S S | >10 ’ Science Loss

chamber
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Atomic polarisability

* Trapping potential depth depends on
atomic polarisability, a.

* A priori, different in ground and excited
states.

* Difference in trap depth between ground
and excited states $)

AU (1) = Upy—U,qy = G0 1y

260 hv
e AC Stark shift (“light shift”), Av.

* Heating.

Physics | Polarisability 15



Typically very small for alkalis

/

H(w, COSZ(GP) )

Erbium polarisability

Aiotal = As (W) + cos (Of) sin(2x) a,(w) + «
Where:
* ¥, ellipticity of trapping light.
* 0, angle between trapping light & quantisation axis.
. QP' angle between polarisation & quantisation axis.

* We fix, Qp =1t/2 & O = T1. Becher, ..., Ferlaino, Phys. Rev. A, 2018
= Qyotal = A5 (W) —sIn(2)) ay(w) + ay(w,0)
* Tune polarisability using trap light ellipticity, x.



AU(I‘) = U|V>—U|g> = _Aa(v,0) I(I')

Magic conditions 2eqc

* Tune polarisability using
ellipticity of trapping light x.

* “Magic condition” for U,/
Ulgy =1.

* Motorised waveplates to
control trap light polarisation.

* Need to be relatively magic to
efficiently load tweezers.

| Maxence
Lepers
ICB

Ellipticity angle, x

Physics | Polarisability 17



Fluorescence signal (arb.)

, I'/27t =190 kHz)

Light shift
measurement

fluorescence spectroscopy 488 nm
(destructive, 1 ms).

* Scan trap power & ellipticity.

583 nm

500 ms 230 ms T T
20ms 1 ms
Trap light ellipticity angle, X = 29.1° 6 T T
2660 . ; : :
4 1A m
2650 | —
| Increasing : | S
trap power o o
2630 | P pury
- -2 ~<<
2620 | £ Q)
5 4 =
2610 | - 0Q
6 D
2600 | ~
2590 | ’ | v
-10
2580 0 100 200 300 400 500 600 700
-4
Physics | Polarisability u|8> (1 18




( , /21t =190 kHz)

Finding the magic

* Magic condition found at y = 26°

Trap light ellipticity angle, X= 25.99°
1.02 ; - = 2700
i ™
¢ -
101 | - g 2680 |
] _ _ -
-
’ L ]
- EEEEEEEEEEEEES w0 | Increasing
= S g
- e S & trap power
T>=_ 099 ~ S 2640
= ; S - i
) ~ : ‘
~ 2 L
098 I ~ % 2620
i ~ i
~ 9 ¢,
097 ® 1 2600 |
~
0.96 N 2580 1
22 23 24 25 26 27 28 29 30 31 - -1 0 1 2 3
Trap e|||ptICIty angle’ X (0) Excitation beam frequency ( F583 )
. . . Physi Polarisabilit 19
White et al., in preparation ysics | Polarisability



Single atoms e <SG G

E 7,12 7,6 1”3

 ~5 atoms in each trap after loading. +(S,P) +|P,5))
2

* Induce losses to get single atoms. AR

* Light-assisted collisions: pairwise losses.

* ~ 50 % single atom probability.

Physics | Pairwise losses 20



( ,T/27 = 190 kHz)

Light-assisted collisions

-

-

583 nm
* Probe atom number in single 201
tweezer at different At.
230 ms
6 . . : ; . . . : , 1 35 ms
light on —09 3+ atoms
0.8 / I
Dark lifetime 07 : |
Mean number il I
of atoms — % os - T. I
n - ‘T3 :
¢ 6 03
| ' . 5 2atoms |
o. 1 |
0 ° . . : . . 1 0.1 | I

0 100 200 0 400 500 600 700 800 900 1000
LAC duration (ms)

50 100 150 200 250

Physics | Pairwise losses LAC duration (ms) 21

White et al.,, in preparation




(

,T/27 = 190 kHz)

Relative loss rates

60 -
e Repeat for different detunings E o Monte-Carl
. | e 1-body onte-Carlo
. » Simulations b
* Good agreement with Monte-Carlo T o
simulations. P { {’
M 30 -
* 1-body: single body heating. o . }
: : S 20 ¢
* “Optimum” detuning. ” -
* Maximum 2-body loss relative to 1-body. 10 - gt ’
—ZfSD —2125 —ZfOD —11?5 —115[} —1I.25 —11[}[} —01?5 —{}fED
A (T'sg3/2m)
Svetlana C,
Kotochigova ucr) = Y
~ Temple University r
Physics | Pairwise losses 22

White et al.,, in preparation



( , I'/2t =190 kHz + )

488 nm
Single-body losses  sssmm
* Start from single atoms.
P 230 ms T 40ms | T 40 ms | T Tt
* Scan trap power. t f 30T
35 ms us
* Turn on LAC-condition light.
* Measure survival. Monte-Carlo
Simulation
* Losses at high trap powers. %
. . Oaxia %
* Primary loss mechanism we 1
have is single-body heating. —*- vradi-é-l----->--1-9 H*
ty
Trap power (mW) 8 ’ ’
Physics | Single-body losses 23

White et al., in preparation



( ,T/27 =190 kHz + )

Trap-related loss mechanisms

* Coupling to excited state.

583 nm state

 Photoionisation.

_________ 107 :
I A488 10°
583 + 488) n
= 10 ’
583) % 10°] S
_________ §A583 .
1014
10° . : ; ;
480 482 484 486 488 490
. . ; =m wavelength (nm)
e State predicted with 583) } Ao
¢ A488 ~ 100 GHz. Maxence @ —Tm T mmm—==-
* I'/21t = 10 kHz Lepers
* Free running trap laser. ICB
24




(

,T/27 = 190 kHz)

Non-destructive imaging

* Single-body losses give ~70 % survival for imaging.
* Not good enough for desired experiments: many imaging steps e.g. for re-arrangement.

0.15r

I
—

Probability

O
o
5

0 50 100 150 200

* “Bridge” in histogram: Fhoton mamber
* 0:1 atom fidelity of ~93 %.
e (99.5 % for 401 nm imaging).

Physics | Single-body losses 25



Outlook

e Axial direction cooling

* Vertical beam through objective.
e Additional 841 nm (I'/2w = 8 kHz) beam.

* Two photon effects: 486 nm laser.
* Lockable & tuneable (~1 nm).
* Larger detuning from predicted + state.
» Additional predicted magic condition for 841 nm.

* Trap and imaging system aberrations: new objective with 1” input.
* No more 3” & 4” optics or compensation glass.
* Reduce trap waist (measure 1.05 um, theoretical is ~0.6 um).
* Less imaging system aberrations — shorter imaging times.

* Implement spatial light modulator (SLM) — 2D tweezer arrays.

* Resolved sideband cooling with 841 nm to motional ground state.
* Further explore Rydberg state excitations.

* Electrodes and MCPs
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Backup slides
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Lukin — Quantum simulation

2. Asarrange 3. Readout

R i o r i e ] o-os0 0 0+G.e
N v ¢ e
I_I P R R R -
-------------- 2 9 0
............ , IS Nl

—= 4
|__|
I e
. d
LIt I LA |

Quantum phases of matter on a 256-atom programmable quantum simulator
Re-arrangement: 50—-100 ms for arrays of up to a few hundred atoms

Filling fractions exceeding 99%

Nature volume 595, pages 227-232 (2021)
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Rydberg dephasing

Let sy = I/Is,t, then: 4

+ Effective Rabi, Qogy =12 = F'Zi'” (sms) - | N

* Off-resonant scattering rate, R; = T:) i;z = 8131)2 S|i) ‘ IA )
Q

19)




Electrodes and MCPs

31
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Trap waist

(@)]
(&)
1

(o)}
o
Y

* Measure radial trap
frequency using parametric
heating.

Trap frequency (kHz)
w BN B (&) (9]
an o N o a

w
(@)
T

N
(&)
T

2024/03/19 meas0026 trap waist measurements

@ ® Trap3
W0 =1.052 +/- 0.043 ym

N
o

Tweezer beam
profile

4 6 8 10 12 14 16
Trap power (mW)
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Tweezer optical setup

Andor Zyla Camera

[

Tweezer Monitor Camera

Photonic erystal fibre
e o Regulation Photodiode

Andor iXon Camera

[ = 200
Tunable Filter

)/

200

Tunable Filter
50 f

Y

Periscope

V= I \ f =750 850
— Filter
v {
Dichroic
Ohjective
2 PBS =50 f— 100
Polariser == ¢ _ 159 f=75  AOD 10:00 2 Sl
A
j Motorised controller
N B 1
\ (] l /
|
|
34



Atomic polarisability

alag) = as(Ay) + [u* % u] COS Qk?—j@U(At)
3m? — J(J +1)3cos?6, — 1

| At).

727 — 1) 5 A

u* X u = sin(2y)
polarization vector u fix 8, =7 /2 and G =7

35



583 Loss Spec (401 Img)

S 1.0- ®
%0.8-
201 5os] ®
§ 0.41
15 - go.o~
- - —75 -50 -25 00 25 50 75 @ S 10l
Av (583 ©
%_ v (Msg3) ® %0.8_
— 10- Sos
2 804
% 0.2
S 0.0
5 - -6 -4 -2 0 2 4
Av (Isg3)
| ® (— »
MOT, 4
beam\l i 0 1 % 3
583 fluo. '
beam L .
45;;:,:? ' i I_I_I_I_Il 20 40 60 80 100 120 140
| ¥ - 2
401 fluo. Trap Intensity (mW /um
beam 2 | [ m_ P y ( / M )

MOT/CMOT Loss Imaging
36



401 imaging

* Alternating pulsed beams — ~1.5 us pulse length.
Well explored in Su, ..., Greiner, arXiv 2404.09978v1, 2024

* Averaged image:
- . - -

2024-02-23 - HorEr ImageNr: #1913

* Longer time image:




Occurrences

583 nm imaging

2023/11/17 meas 7, Cam4_Trap3 _Sum, PID488 SP img = 1.3

175 1

g

0 1000 2000 3000 4000
Counts

5000
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Blue-enhanced loading

a b
o L
S+P 8 100

= [

B @

] =

c 3

Ll [
L9
o
)
@
o
=
=]
=

>

u > 0 0.5 1.0 15 2.0
Interatomic separation, R Integrated signal (arb. units)

Grinzweig, ..., Anderson
Nature Physics 6, 951-954 (2010)
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Auto-fluorescence/phosphorescence

x108
T T T T T 1 T
+ 2023-08-29_meas0039_background_phosphorescence_Tw60SP_timeScan_2 txt
87 . Averagedbetween5and 25times
8.65 -
]
k)
86 i
L ]

E
@, ¢
=

855 - k i

85 : E

--% 5 -9

0 20 40 60 80
timevar1

2023-08-29_meas0039_background_phosphorescence_Tw6-0SP_timeScan_2txt

Tweezer light on (atten. = 0dB, SP = 6, centre freq. =92 5 MHz, spacing =0 MHz, num. = 1) -> MOT (t = 35 ms) -> Compress MOT (t = 230 ms) -> Ramp to tweezer
hold bias (x =-0.2 Ay =-0.1 A, z= 2 A) -> Tweezer hold (t = 50 ms) -> Ramp to tweezer imaging bias (x=-0.2 A, y=-0.1 A,z = 2 A)-> Imaging (t_exp =150 ms,
583img1. freq = 0 MHz, 583img1. atten. = 31 dB, 583img2. freq. = 115 65 MHz, 583img2. atten. =4 dB) -> End

100

120

Occurrences

4.5

x 1

05 Fluorescence with 22 A/1.91 W and texp =150 ms

I T T

[ Background signal
1 =0.020506; o = 0.64605

= = = Hpackground +3 %background

[ ICompensation glass fluorescence

w=0.16491; 0= 0.75433

[ ITop viewport fluorescence

1 =0.302; o= 0.79748

[TIN-BK7 1m lens fluorescence

w=27121; o= 1.3051 il

BK7 cylinder fluorescence
= 13.2465; o = 3.2993 R

10 15 20
Photons
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35000

30000

— 25000

20000

15000

Fluorescence [a.u

10000

5000

300

SF 1 reference spectra

5F1 ref. 365 nm excitation,
integral 100%

5F1 ref. 405 nm excitation,
integral 15%

5F1 ref. 488 nm excitation,
integral 8,1 %

5F1 ref. 532 nm excitation,
integral 0.8 %

5F1 ref. 642 nm excitation,
integral 0.04 %

400 500 600 700 800
wavelength [nm]

Fig. 13: SF1 reference sample spectrum for 365 nm, 405 nm, 488 nm, 532 nm
and 642 nm excitation.
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Two photon loss simulation

o['5/(21) ~ 61 kHz
Ay~ 1cm”(-1) ~ 2rtx30 GHz

Survival

1.0

o
o

o
&

o
N

o
(o)

e Exp data
Sim: incl. two-photon
{{{{ { §{{ Sim: only one-photon
bt %
ty
¢
§ K
§ 23
b3 ;
@ é .
_1_.. 1 , | | '
° 2 4 6 8 10

Tweezer power (mW)

42



Monte Carlo

” 5;';[2] mv ot [3] v

| | — Schneider Grin

%mi"z—VU(r)—mg‘E A=Ayg—k-v

T ™ __Nophotonabs. _ -~ l Photo

amn® h“—-#
-
------

. : v — Vv + hk/m :
VoV +(hkm)a wmi = =VU(r) — mg

Svetlana
Kotochigova
Temple University
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6s electron excitations

30 000 4f2(3H)6s6p
583 312 271 180 7 4f2(3He)6s6p(3P°y)
426 388 38 300 5 4f2(3H)6s6p
420 393 27 30 6  4f2(3F)6s6p(3P°)
419 394 25 300 5 4f22(3F)6s6p(3P°)
418 394 24 600 5 4f'%(3H)6s6p
391 422 31 900 7 4f(3H)6s6p(3P°)



4f electron excitations
M

7000 4f11(*F°)5d6s>
1299 207 1092 le-3 7 Af*Y(*%1°15/,)5d5/,65° x2 1 Photon
365 349 16 0.3 7 AfY4°)5d%(3P) 65
357 357 0 il 7 4f''sdes’
353 360 6 50 7 Af4°)5d6s6p
342 372 30 3 5 4f1(%F°)5d6s>
338 377 39 0.2 6  4f4°)5d%(1D) (*G°)6s

* Doubled Ti:Sapph range is ~¥335-525 nm (M-Squared website).
* Many unassigned levels in NIST < 400 nm.
* Only a few states have rate information.



Dephasing: photon recoil

* Doppler shift from photon recoil [1]

WWW © <N

Solutions:

e Counter-propagating beams at similar wavelengths.

e 3-photon excitations

* Excitation from motional ground state.

* Gets less important at larger Rabi frequencies (> 1 MHz) [2].

[1] Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions https://doi.org/10.1103/PhysRevA.84.053409
[2] Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states https://doi.org/10.1103/PhysRevA.97.053803
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